Determination of Empirical and Molecular Formulas

Empirical Formula, **E.F. (atom ratio)**: from % composition by weight.

Substance contains 40.0% carbon, 6.7% hydrogen, (assume remainder, 53.3% is oxygen).

Since the composition is independent of the size of the sample, choose a 100 gram sample for convenience.

Element	Amount (grams)	Atomic Mass (grams/mole)	Amount (moles)	Mole Ratio	Atom Ratio
Carbon	40.0	12.01	3.33	1	1
Hydrogen	6.7	1.008	6.65	2	2
Oxygen	53.3	16.00	3.33	1	1

Atom ratio reexpressed: $C_1H_2O_1$, or CH_2O

Molecular Formula, **M.F. (atom number)**; from **E.F.** + molecular weight:

If the molecular weight is 30, the molecular formula is CH_2O

If the molecular weight is 60, the molecular formula is $C_2H_4O_2$

If the molecular weight is 90, the molecular formula is $C_3H_6O_3$

etc.

Structural Formula (atom connections); from M.F. + properties