Logarithms

A **logarithm** is used to solve an exponential equation, where the unknown is the exponent. Logs and bases are inverse operations, like multiplication and division or exponents and roots.

 $y = b^x$ can be rewritten as $\log_b y = x$

So, when you compute log 3, you are actually solving for x in $10^{x} = 3$.

For example, to solve for x in $10^x = 25$, rewrite using log:

$10^{x} = 25$	<i>b</i> is 10, <i>y</i> is 25, and <i>x</i> is our unknown exponent
$\log_{10} 25 = x$	the log button on a calculator is \log_{10} , so push 'log 25'
log 25 = 1.398	
1.398 = <i>x</i>	
	1 200

To check your answer, put 1.398 back into the original problem: $10^{1.398} \approx 25$

Sometimes you have a base other than 10. When that is the case, you can use the conversion formula given below to change bases.

$$\log_b x = \frac{\log x}{\log b} = \frac{\ln x}{\ln b}$$
$$\log_2 8 = \frac{\log 8}{\log 2} = 3$$

In is called the natural log; it is actually \log_e . e is like pi, in that it is a symbol for a commonlyused number that doesn't repeat or terminate. e ≈ 2.718

Quantitative Reasoning Studio

Logarithms are used to solve pH problems.

pH = -log [H⁺]

If you are given $[H^+]$, simply plug the value into the equation and evaluate to find the pH.

Find pH when $[H^+] = 1.2 \times 10^{-5}$ pH = -log[1.2 x 10^{-5}] pH = -(-4.921) pH = 4.921

If you are given pH, use inverse operations to solve for [H⁺].

Find [H+] when pH = 3.8.

3.8 = -log [H ⁺]	divide by -1 to move the negative sign
-3.8 = log [H ⁺]	10^ is the inverse operation of log
$10^{-3.8} = [H^+]$	evaluate to simplify
1.585 x 10 ⁻⁴ = [H ⁺]	

Because logs are related to exponents, there are some rules similar to exponent rules that apply to logarithms (with any base, including *e*). These rules are helpful when using formulae that include logs.

 $\log A + \log B = \log (A \times B) \qquad \qquad \log x^n = n \log x \qquad \qquad \log_b (\frac{1}{t}) = -\log_b t$

 $\log A - \log B = \log \left(\frac{A}{B}\right) \qquad \qquad \log_b 1 = 0$