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a b s t r a c t

Recent studies of stalagmites from the Southern Hemisphere tropics of Indonesia reveal two shifts in
monsoon activity not apparent in records from the Northern Hemisphere sectors of the Austral-Asian
monsoon system: an interval of enhanced rainfall at ~19 ka, immediately prior to Heinrich Stadial 1,
and a sharp increase in precipitation at ~9 ka. Determining whether these events are site-specific or
regional is important for understanding the full range of sensitivities of the Austral-Asian monsoon. We
present a discontinuous 40 kyr carbon isotope record of stalagmites from two caves in the Kimberley
region of the north-central Australian tropics. Heinrich stadials are represented by pronounced negative
carbon isotopic anomalies, indicative of enhanced rainfall associated with a southward shift of the
intertropical convergence zone and consistent with hydroclimatic changes observed across Asia and the
Indo-Pacific. Between 20 and 8 ka, however, the Kimberley stalagmites, like the Indonesian record, reveal
decoupling of monsoon behavior from Southeast Asia, including the early deglacial wet period (which we
term the Late Glacial Pluvial) and the abrupt strengthening of early Holocene monsoon rainfall.

© 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Integrated within the Austral-Asian monsoon system are the
Indonesian-Australian (IASM) and the East Asian summer mon-
soons (EASM). Hydroclimate reconstructions from Southeast Asia,
the Maritime Continent, and northern Australia have revealed that
the IASM and EASM responded in a similar, albeit anti-phased,
manner during the Younger Dryas (YD) and Heinrich stadials (HS)
(Wang et al., 2001; Muller et al., 2012; Ayliffe et al., 2013; Denniston
et al., 2013a). During these events, both the austral and boreal
intertropical convergence zones (ITCZ) drifted southward, pro-
ducing a weaker EASM and concomitant increases in rainfall over
many areas of the Southern Hemisphere within the IASM regime
(Reeves et al., 2013). A recent stalagmite record from southern
F. Denniston).
Indonesia (L in Fig. 1) identified two pluvial periods lacking coun-
terparts in the EASM: (1) prior to HS1 (Ayliffe et al., 2013) and (2) in
the early Holocene (Griffiths et al., 2013). Both of these events
suggest a southward excursion of the ITCZ unmatched in Southeast
Asia. Understanding the spatial scale of these events is useful for
evaluating the sensitivities of the IASM and EASM to external
forcing. We present a composite stalagmite record from two caves
(B and K in Fig. 1) in the monsoon-dominated region of north-
central Australia (the southern end of the Austral-Asian monsoon
regime) that document the spatial extent of the southward shift of
the ITCZ. We focus primarily on stalagmite carbon isotopic ratios, a
proxy that reflects a suite of variables specific to the cave sites, but
that are linked directly or indirectly to IASM rainfall dynamics. This
composite record expands on the previously published oxygen
isotopic records of Denniston et al. (2013a; 2013b), with the addi-
tion of stalagmites that fill important gaps in the early stages of
deglaciation.
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Fig. 1. Total mean annual precipitation for Southeast Asia, the Indo-Pacific, and
Australia (1979e2015).
Stars denote locations of cave sites discussed in text (from north to south): Hulu Cave
(H; Wang et al., 2001) and Dongge Cave (D; Dykoski et al., 2005), China; Gunung Buda,
Borneo (G; Partin et al., 2007); Liang Luar, Indonesia (L; Griffiths et al., 2013; Ayliffe
et al., 2013); KNI-51 (K) and Ball Gown Cave (B), Australia (this study). Dashed oval
near K and B denotes location of the Kimberley. Precipitation data from CPC merged
precipitation analysis dataset (Xie and Arkin, 1997).
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2. Cave locations and samples

The Kimberley composite stalagmite record involves two cave
sites in northern Western Australia separated by ~300 km: Ball
Gown cave (17�20S, 125�00E, ~100 m elevation) and KNI-51 (15�180S,
128�370E, ~100 m elevation) (Fig. 1). Ball Gown cave (western
Kimberley) is characterized by anastomosing passageways con-
necting a single entrance at the top with a single entrance at the
bottom of a ~30 m-high escarpment in the Devonian Windjana
Limestone. KNI-51 (eastern Kimberley) is formed in the Devonian
Ningbing Limestone, and is a shallower cave (~10e15 m) composed
of a less complex geometry that is defined largely by a single quasi-
horizontal passageway and one entrance (Figure S1; Supplemental
Information). We report carbon isotopic ratios of five calcite sta-
lagmites from KNI-51 and six calcite stalagmites from Ball Gown
cave. For eight of these 11 stalagmites, age models and oxygen
isotopic ratios were previously published (Denniston et al., 2013b);
three KNI-51 stalagmite records are newly reported here (Figure S2
and S3). Two of the KNI-51 stalagmites contain evidence for a
limited degree of alteration of the original finely crystalline fabric,
but the facts that (1) both intervals show no evidence of open
system behavior with respect to U or Th, and (2) carbon and oxygen
isotopic values agree with those in coeval stalagmites, suggest that
the climate signals recorded here remain uncompromised. Other
short intervals contain evidence of alteration that influenced U-
series or stable isotopic ratios, typically just below hiatuses, and
data from these areas are excluded from this analysis (Figure S3).
3. Methods

Chronologies for the previously unpublished stalagmite records
were developed with 35 230Th-234U dates obtained at the Univer-
sity of New Mexico using a Thermo Neptune MC-ICP-MS (Table S1;
Supplemental Information). The ages fall in correct stratigraphic
order when considering 2s absolute errors (typically between±120
to ±380 yr), although some dates were excluded from age models
because high 232Th/238U ratios led to large corrections for detrital
230Th and thus unacceptably large uncertainties on the ages. Car-
bon and oxygen ratios were measured at the Iowa State University
Department of Geological and Atmospheric Science Stable Isotope
Laboratory using a Gas-Bench II with a CombiPal autosampler
coupled with a ThermoFinnigan Delta Plus XL continuous flow
mass spectrometer (Supplemental Information). Of the total 1285
samples comprising the Kimberley composite stalagmite time se-
ries, 315 were analyzed solely for this study. Environmental con-
ditions (cave air temperature and relative humidity) were recorded
as part of an on-going monitoring program at both caves; baro-
metric pressure was also monitored at KNI-51 (Figure S3; Supple-
mental Information).

4. Results

Oxygen isotopic values in stalagmites are a commonly used
proxy for tropical paleohydrology and are related to amount effects
in monsoon rainwater, the primary source of oxygen in speleothem
carbonate. Analysis of d18O values of precipitation from Darwin,
Australia, the closest Global Network of Isotopes in Precipitation
station to either cave, are closely tied to monthly precipitation
amount (IAEA, 2016; Zwart et al., 2016). Carbon isotopic values in
stalagmites represent a more complex system, but most drivers of
d13C variability are tied to hydroclimate over seasonal (Ridley et al.,
2015) to orbital time scales (Cruz et al., 2006). Mechanisms linking
effective moisture to dripwater (and thus stalagmite) carbon iso-
topic ratios include prior calcite precipitation (Baker et al., 1997;
Ridley et al., 2015), soil biologic activity/vegetation density (Genty
et al., 2003), the amount of carbon derived from bedrock
(Hellstrom and McCulloch, 2000), and the isotopic composition of
overlying vegetation type (influenced by C3/C4 ratios and atmo-
spheric pCO2) (Dorale et al., 1992; Breecker, 2017), all of which are
expected to shift d13C values higher (lower) during periods of
reduced (enhanced) rainfall.

The Kimberley composite stalagmite record yields a continuous
time series through the Last Glacial Maximum and deglaciation and
spans the majority of the last 40 kyr (Fig. 2). Coeval stalagmites
from the same cave overlap in isotopic composition and structure,
and coeval stalagmites from the two caves also share similar iso-
topic trends, observations that argue for a dominant climatic in-
fluence on dripwater isotopic chemistry at both sites (Dorale and
Liu, 2009). This interpretation is supported by environmental
conditions at both caves, and that include high humidity, particu-
larly during the monsoon season when drips are most active and
thus when most speleothem growth occurs, and limited seasonal
temperature variability (Figure S4). Covariation between d13C and
d18O is low in KNI-51 stalagmites and moderate in Ball Gown sta-
lagmites (Figure S5). Ball Gown and KNI-51 d13C values are offset by
several permil, with Ball Gown d13C values reaching as high asþ8‰
while maximum values at KNI-51 are �1‰; Ball Gown stalagmites
also exhibit a larger range of values than KNI-51 (15‰ and 10‰,
respectively). As a result, stalagmites from each cave are plotted on
separate y-axes in order to account for the differential controls on
carbon and oxygen isotopic ratios (Fig. 2), a method supported
(particularly for carbon) by integrating z-scores of these data
(Figure S6).

The Kimberley composite stalagmite d13C time series largely
agrees with the more precisely-dated Liang Luar stalagmite d18O
records of Griffiths et al. (2013) and Ayliffe et al. (2013) from
southern Indonesia (Fig. 3). At Liang Luar, as in the Kimberley, HS
and the YD are characterized by increases in monsoon rainfall, as
recorded by lower oxygen isotopic and/or Sr/Ca ratios. Some dis-
crepancies exist in their respective chronologies, however. While



Fig. 2. Kimberley composite stalagmite record carbon and oxygen time series.
Ball Gown (right axis; earth tones) and KNI-51 (left axis; blues) stalagmite carbon (top)
and oxygen (bottom) time series. Note the different scales on the right and left axes,
which reflect site-specific controls on speleothem isotopic ratios. Stalagmites from
each cave exhibit similar isotopic values and trends, which allows them to be visually
integrated into a single time series. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Late Glacial through early Holocene paleomonsoon variability.
Oxygen isotopic time series of cave records from a. China (Dongge Cave; Dykoski et al.,
2005e dark blue and Hulu Cave; Wang et al., 2001 e lighter blue) and b. Indonesia
(Liang Luar cave; Griffiths et al., 2009 e green; Ayliffe et al., 2013 e blue). c. Carbon
isotopic time series from Kimberley stalagmites (KNI-51 e blues, left axis; Ball Gown e

earth tones; right axis). Dashed lines connect correlated millennial events (YD ¼
Younger Dryas; HS1 ¼ Heinrich Stadial 1; LGP ¼ Late Glacial Pluvial). For the Kimberley
composite stalagmite record, Ball Gown and KNI-51 stalagmites are presented on
different y-axes in order to account for the distinct isotopic values and ranges of values
at each cave. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

R.F. Denniston et al. / Quaternary Science Reviews 176 (2017) 101e105 103
the YD in the Kimberley (13.4e11.7 ka) matches the Indonesian
d18O record (13.5e11.5 ka), HS1 is dated approximately to 16.5e14.8
ka in the Kimberley and 17.7e14.7 in Indonesia. Average two
standard deviation errors on U-Th dates ranging from 24 to 10 ka
are ±230, ±95, and ±150 yr for Hulu Cave, Dongge Cave, and Liang
Luar stalagmites, respectively. Similar to the Indonesian stalagmite
d18O time series, the Kimberley composite stalagmite d13C record
preserves an interval of enhanced rainfall prior to HS1 (~18.3e17.3
ka in the Kimberley vs ~19.7e19.1 ka in Indonesia). We term this
event the Late Glacial Pluvial (LGP). Most of the offsets in age be-
tween the Kimberley and Liang Luar time series fall within the
combined errors on the 230Th dates, but the LGP is ~1.5 kyr earlier in
Indonesia than in the Kimberley. While the structural similarities
between the two records suggest the LGP may be the same (or a
related) event identified at Liang Luar, the age offset raises ques-
tions about their phase relationships and drivers. The offset of the
LGP between the Kimberley and Liang Luar records may represent
an artifact of dating errors, but it is also possible that the two sites
experienced distinct pluvials, or perhaps a single time-
transgressive pluvial, in the early stages of deglaciation (Fig. 3).
5. Stalagmite isotopic variability and Austral-Asian monsoon
dynamics

While both carbon and oxygen anomalies mark the YD, HS1, and
LGP, the pronounced carbon isotopic anomalies associated with
HS2 and HS4 contrast sharply with muted concomitant variations
in oxygen isotopic ratios (Fig. 2). The reasons for this difference are
uncertain but may be related to late glacial sea level variability and
the evolution of atmospheric moisture across tropical Australia. In
the Kimberley record as at Liang Luar, the magnitude of the LGP is
similar to that of HS1; no similar event is apparent in either the
Hulu/Sanbao cave records (Wang et al., 2001, 2008) or the Gunung
Buda (Borneo) record (Partin et al., 2007).
The second feature apparent in the southern portion of the IASM
region is the sharp increase in rainfall at ~9 ka, which is recorded in
both KNI-51 and Ball Gown stalagmites (Fig. 4). Griffiths et al.
(2013) identified this feature in the oxygen isotopic and trace
elemental record of Liang Luar stalagmites and tied it to sea level
rise and consequent flooding of the Sunda continental shelf, which
reached to within 30 m of present sea level by 9.5 ka (Hanebuth
et al., 2000) (Fig. 4). The synchronous Kimberley carbon isotopic
shift also appears linked to enhanced rainfall, likely through a
reduction in prior calcite precipitation. However, increases in
vegetation density and/or rainforest taxa, such as were observed at
~9 ka in pollen spectra from northern (Shulmeister and Lees, 1995)
and northeastern Australia (Donders et al., 2007), could also have
played a role. A recent palynological study from the western Kim-
berley reveals increasing precipitation into the early Holocene but
lacks evidence for the abrupt shift to wetter conditions at ~9 ka
(Field et al., 2017). Nonetheless, the similarly rapid intensification of
the IASM across Indonesia and Australia appears to reveal a
regional, rather than local, threshold. Neither this early Holocene



Fig. 4. Kimberley composite stalagmite isotopic records and regional comparisons.
a-f. North-to-south array of stalagmite reconstructions of the Austral-Asian monsoon.
a. Oxygen isotopic ratios of Dongge cave (Dykoski et al., 2005; dark blue) and Hulu
cave stalagmites (Wang et al., 2001; lighter blue); b. Oxygen isotopic ratios from
Gunung Buda, Borneo stalagmites (Partin et al., 2007); c-d. Oxygen isotopic (c) and Sr/
Ca ratios (d) from Liang Luar, southern Indonesia (Griffiths et al., 2009 - green; Ayliffe
et al., 2013 e blue); e-f. KNI-51 (black and grey) and Ball Gown (blue and purple)
carbon (e) and oxygen (f) isotopic time series. Isotopic ratios for Ball Gown and KNI-51
are presented on different axes in order to allow the visual integration of the two time
series, each of which is influenced by cave-specific controls; g. Eustatic sea level (cyan
line; Bintanja and van deWal, 2008), Indo-Pacific sea surface temperature (purple line;
Stott et al., 2002), and June insolation (dashed red line; Berger and Loutre, 1991). Also
shown are Heinrich stadials (HS; vertical blue lines), the Younger Dryas (YD), and the
Late Glacial Pluvial period (LGP; vertical purple line) identified in the Indonesian and
Kimberley records. Gunung Buda record identifies the Antarctic Cold Reversal and not
the YD, but neither was demarcated in the figure for ease of interpretation. Similarly,
the LGP does not appear to be expressed in the Gunung Buda or Hulu cave records. Red
arrows define early Holocene period of enhanced monsoon rainfall. IASM ¼ Indone-
sian-Australian summer monsoon; EASM ¼ East Asian summer monsoon. (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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monsoon intensification nor the LGP is apparent in either the
Borneo (Partin et al., 2007) or Chinese records, however (Wang
et al., 2001, 2008) (Fig. 4). This finding is consistent with the re-
sults of a modeling study by DiNezio and Tierney (2013) that found
exposure of the Sunda Shelf during the Last Glacial Maximum
induced regional decreases in rainfall across northern Australia and
Indonesia, in part associated with a shift in the location of the
Walker Circulation.

6. Conclusions

The Kimberley composite stalagmite d13C values appear more
sensitive to hydroclimate variability than d18O during the Late
Glacial and reveals increased rainfall during the YD, HS1, HS2, and
HS4, which are matched by concomitant decreases in rainfall in
China and/or Borneo, supporting attribution of these events to
southward displacement of the ITCZ. However, the presence of
pluvials immediately prior to HS1 and at 9.5 ka, events not recorded
in the EASM, suggest occasional decoupling of the northern and
southern sectors of the Austral-Asian monsoon regime.
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